IL-17 Enhances Chemotaxis of Primary Human B Cells during Asthma

نویسندگان

  • Rabih Halwani
  • Roua Al-Kufaidy
  • Alejandro Vazquez-Tello
  • Mary Angeline Pureza
  • Ahmed S. BaHammam
  • Hamdan Al-Jahdali
  • Sami A. Alnassar
  • Qutayba Hamid
  • Saleh Al-Muhsen
چکیده

IL-17 is a pro-inflammatory mediator that is believed to play a critical role in regulating tissue inflammation during asthma, COPD, as well as other inflammatory disorders. The level of expression of IL-17 has been shown to be upregulated in lung bronchial tissue of asthmatic patients. Several reports have provided further evidence that this cytokine could play a key role in enhancing the migration of inflammatory as well as structural cells of the bronchial lung tissue during asthma and COPD. B cell infiltration to sites of inflammation during inflammatory disorders such as bowel disease, asthma and COPD has been reported. Accordingly, in this study we hypothesized that IL-17 may exert a chemotactic effect on primary B cells during asthma. We observed that B cells from asthmatic patients expressed significantly higher levels of IL-17RA and IL-17RC, compared to those of healthy subjects. Using an in-vitro migration assay, B cells were shown to migrate towards both IL-17A and IL-17F. Interestingly, blocking IL-17A and IL-17F signaling using either anti-IL-17R antibodies or MAP kinase inhibitors prevented in vitro migration of B cell towards IL-17. These observations indicate a direct chemotactic effect of IL-17 cytokines on primary peripheral blood B cells with higher effect being on asthmatic B cells. These findings revealed a key role for IL-17 in enhancing the migration of B cells to the lung tissue during asthma or COPD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immune dysregulation in children with allergic asthma, a close relationship between IL-17 but not IL-4 or IFN-, and disease severity

Background : Allergic asthma is a chronic inflammatory disease of airway that often determined with degrees of inflammation, hypersensitivity, bronchial constriction and airway changes. Th1, Th2 and Th17 cells are the main cells involved in the pathophysiology of asthma. . Therefore, this study evaluated Th1, Th2, and Th17 cells functions by assessment the expression of INF-g, IL-4, and IL-17 g...

متن کامل

A novel subset of CD4+ TH2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma

The inflammatory cytokine interleukin (IL)-17 is involved in the pathogenesis of allergic diseases. However, the identity and functions of IL-17-producing T cells during the pathogenesis of allergic diseases remain unclear. Here, we report a novel subset of T(H)2 memory/effector cells that coexpress the transcription factors GATA3 and RORγt and coproduce T(H)17 and T(H)2 cytokines. Classical T(...

متن کامل

Inactivated Mycobacterium phlei inhalation ameliorates allergic asthma through modulating the balance of CD4+CD25+ regulatory T and Th17 cells in mice

Objective(s): Th2 response is related to the aetiology of asthma, but the underlying mechanism is unclear. To address this point, the effect of nebulized inhalation of inactivated Mycobacterium phlei on modulation of asthmatic  airway  inflammation was investigated. Materials and Methods: 24 male BALB/c mice were randomly divided into three groups: control group (Group A), asthma model group (G...

متن کامل

IL-17-expressing cells as a potential therapeutic target for treatment of immunological disorders.

IL-17 is a multifunctional cytokine produced by activated CD4+ and CD8+ lymphocytes as well as stimulated unconventional Tγδ and natural killer T cells. IL-17 induces expression of chemokines, proinflammatory cytokines and metalloproteinases, thereby stimulating the inflammation and chemotaxis of neutrophils. Elevation of proinflammatory cytokines is associated with asthma and autoimmune disord...

متن کامل

YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration.

Recently, the serum levels of YKL-40, a chitinase-like glycoprotein, have been shown to be significantly elevated in asthmatics and are associated with asthma severity. Although these studies raise the possibility that YKL-40 may influence asthma, the mechanisms remain unknown. This study firstly investigated the mechanisms involved in YKL-40-mediated inflammation in human bronchial epithelial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014